Acnode - definição. O que é Acnode. Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Acnode - definição

ISOLATED POINT IN THE SOLUTION SET OF A POLYNOMIAL EQUATION IN TWO REAL VARIABLES. EQUIVALENT TERMS ARE "ISOLATED POINT OR HERMIT POINT"

Acnode         
·noun An isolated point not upon a curve, but whose coordinates satisfy the equation of the curve so that it is considered as belonging to the curve.

Wikipédia

Acnode

An acnode is an isolated point in the solution set of a polynomial equation in two real variables. Equivalent terms are isolated point and hermit point.

For example the equation

f ( x , y ) = y 2 + x 2 x 3 = 0 {\displaystyle f(x,y)=y^{2}+x^{2}-x^{3}=0}

has an acnode at the origin, because it is equivalent to

y 2 = x 2 ( x 1 ) {\displaystyle y^{2}=x^{2}(x-1)}

and x 2 ( x 1 ) {\displaystyle x^{2}(x-1)} is non-negative only when x {\displaystyle x} ≥ 1 or x = 0 {\displaystyle x=0} . Thus, over the real numbers the equation has no solutions for x < 1 {\displaystyle x<1} except for (0, 0).

In contrast, over the complex numbers the origin is not isolated since square roots of negative real numbers exist. In fact, the complex solution set of a polynomial equation in two complex variables can never have an isolated point.

An acnode is a critical point, or singularity, of the defining polynomial function, in the sense that both partial derivatives f x {\displaystyle \partial f \over \partial x} and f y {\displaystyle \partial f \over \partial y} vanish. Further the Hessian matrix of second derivatives will be positive definite or negative definite, since the function must have a local minimum or a local maximum at the singularity.